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A B S T R A C T   

The COVID-19 pandemic has brought an unprecedented crisis to the global health sector. When 
discharging COVID-19 patients in accordance with throat or nasal swab protocols using RT-PCR, 
the potential risk of reintroducing the infection source to humans and the environment must be 
resolved. Here, 14 patients including 10 COVID-19 subjects were recruited; exhaled breath 
condensate (EBC), air samples and surface swabs were collected and analyzed for SARS-CoV-2 
using reverse transcription-polymerase chain reaction (RT-PCR) in four hospitals with applied 
natural ventilation and disinfection practices in Wuhan. Here we discovered that 22.2% of 
COVID-19 patients (n = 9), who were ready for hospital discharge based on current guidelines, 
had SARS-CoV-2 in their exhaled breath (~105 RNA copies/m3). Although fewer surface swabs 
(3.1%, n = 318) tested positive, medical equipment such as face shield frequently contacted/used 
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by healthcare workers and the work shift floor were contaminated by SARS-CoV-2 (3–8 viruses/ 
cm2). Three of the air samples (n = 44) including those collected using a robot-assisted sampler 
were detected positive by a digital PCR with a concentration level of 9–219 viruses/m3. RT-PCR 
diagnosis using throat swab specimens had a failure rate of more than 22% in safely discharging 
COVID-19 patients who were otherwise still exhaling the SARS-CoV-2 by a rate of estimated 
~1400 RNA copies per minute into the air. Direct surface contact might not represent a major 
transmission route, and lower positive rate of air sample (6.8%) was likely due to natural 
ventilation (1.6–3.3 m/s) and regular disinfection practices. While there is a critical need for 
strengthening hospital discharge standards in preventing re-emergence of COVID-19 spread, use 
of breath sample as a supplement specimen could further guard the hospital discharge to ensure 
the safety of the public and minimize the pandemic re-emergence risk.   

1. Introduction 

The world has almost been brought to a standstill by the COVID-19 pandemic, and hospitals across the globe face unprecedented 
challenges (Wan et al., 2020). Inside COVID-19 patient care centers, the air, frequently touched object surfaces, and floors have been 
found to be contaminated by SARS-CoV-2 (Guo et al., 2020; Liu et al., 2020; Santarpia et al., 2020). Infections of medical staff by 
SARS-CoV-2 have been reported in hospitals globally; some of them unfortunately lost their lives (CCDC, 2020; Reusken et al., 2020). 
Additionally, the medical community is challenged with the dilemma of discharging patients to re-allocate precious resources, while 
accepting the risks of reintroducing the source of infection to the public. For convenient diagnosis of the disease, the hospitals use 
throat or nasal swabs, sometimes supplemented with computed tomography (CT) scans for enhanced screening (Xie et al., 2020; Zhao 
et al., 2020). After hospital discharge, however, some COVID-19 patients, have tested positive again for SARS-CoV-2 using the throat 
swab protocol (Peng et al., 2020; Xiao et al., 2020; Zhang et al., 2020). Despite major progress in understanding COVID-19, infection 
risks related to recovering patients and to contaminated surfaces and air remain uncertain. In this study, we aimed to examine the 
possible presence of SARS-CoV-2 in exhaled breath specimens from recovering COVID-19 patients who have repeatedly tested negative 
using throat swabs; and to study environmental contamination by SARS-CoV-2 within four hospitals in Wuhan, China. 

2. Materials and methods 

2.1 Exhaled breath sample collection 

Details of ready-to-discharge COVID-19 patients and the four hospital configurations (Tables S1 and S2) were described in Sup
porting Information. Exhaled breath condensate (EBC) samples were collected from 13 recruited patients (9 recovering COVID-19 
patients, and four with influenza symptoms who tested negative for SARS-CoV-2), using a BioScreen II device following the pro
tocols provided by the manufacturer (Fig. S4). To avoid saliva contamination and collection of larger droplets, a long straw, made of 
polypropylene, was used to allow the patient to breathe into a tube that was electrically cooled for 5 min. For COVID-19 patient B-L2, 
who died later, EBC was not taken. The EBC sample of one non-COVID-19 patient (C–Y1) was collected twice to confirm the result. EBC 
sample volumes of approximately 300–500 μL were obtained for all patients. The samples were immediately pipetted into a corning 
tube and transported to the laboratory for SARS-CoV-2 analysis. Clinical information for non-COVID-19 patients is listed in Table S2. 
The throat swabs of the recovering COVID-19 patients had all tested negative for SARS-CoV-2 by the hospital (Table S2) before their 
EBC samples were collected. Examples of the EBC sample collection points in four different hospitals are shown in Figs. S2 and S3. A 
total of 14 EBC samples were collected (see Table S3 for detailed information). 

2.2 Surface swab sample collection 

Swab samples were collected from surfaces associated with the COVID-19 patients and medical staff, and from many other surfaces 
inside the four hospitals in Wuhan. Specifically, a wet cotton swab was used to scrub the surface (an area of 10 cm × 10 cm or 5 cm × 5 
cm) of objects in the hospital environment and from personal items of the patients. The surface swab samples were deposited in the 
virus collection liquid (Jiangsu Kangjian Medical Supply, Inc, Taizhou, China), and then transported to the laboratory and stored at 
− 20 ◦C for SARS-CoV-2 analysis. A total of 318 surface swabs were collected. Details are listed in Table S4. 

2.3 Air sample collection 

Air samples were collected from the corridors, hospital waste storage rooms, ICU rooms, toilets, medical preparation rooms, clinical 
observation rooms, and general wards of four hospitals in Wuhan, China. The air samples were collected using the Air-nCoV-Watch 
(ACW) system developed by Peking University through integrating housemade impinger samplers (Wa-15,WA-400) in collabora
tion with a company in Beijing and a robot (examples for onsite sampling are shown in Fig. S5). The WA-15 sampled at a flow rate of 15 
L/min, while the WA-400 with a cutoff size of 0.58 μm sampled at 400 L/min. For corridor spaces or naturally ventilated environments, 
the WA-400 was installed on a robot for air sampling (Figs. S5A and B), while for semi-enclosed environments such as toilets or ICU 
rooms, the WA-15 was used for sampling (Fig. S5C). The robot was programmed to move along pre-determined routes inside the 
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hospital (Fig. S5B; Video S1). In each case, air was sampled into 3 mL of the virus sampling liquid mentioned above for 40 min; after the 
sampling, the remaining volume of the collection liquid dropped to about 1.5–2 mL due to evaporation. The collected air samples were 
transported to the laboratory for SARS-CoV-2 analysis. The air samples collected using the robot comprised air from different areas of 
the interior hospital corridor, and thus were more representative than those from stationary samplers for average viral level of the 
corridor air. . Air samples were also collected inside intensive care units, hospital wards, and toilet room. Some examples of air sample 
collection points are also shown in Figs. S2 and S3. A total of 44 air samples were collected; detailed information is listed in Table S5. 

The collected samples (200 μL taken from the collection liquid) went through several steps for SARS-CoV-2 detection. First, an 
automated nucleic acid extraction device (NP968–S, Xi’an Tianlong Sci &Tech Co., Ltd., Xi’an, China) and an RNA extraction kit 
(Jiangsu Bioperfectus Technologies, Nanjing, China) were used to extract SARS-CoV-2 RNA, achieving a final sample RNA suspension 
of 70–80 μL. SARS-CoV-2 detection with targets of N and ORF1a/b genes was then performed using RT-PCR (BioRAD CFX96 Real-Time 
System C1000 Thermal Cycler, Hercules, California) together with a detection kit (Jiangsu Bioperfectus Technologies) (except for 
sample D–SS–V10 with additional E and RdRp genes-Table S4) under the following cycle conditions: 50 ◦C for 10 min and 97 ◦C for 1 
min, followed by 45 cycles of 97 ◦C for 5 s and 58 ◦C for 30 s. The reaction mixture included 7.5 μL of nucleic acid amplification mix, 5 
μL of Taq Enzyme Mix, 4 μL of SARS-CoV-2 reaction mix, 3.5 μL of RNA-free H2O, and 5 μL of sample RNA. In accordance with the 
instructions, for cycle threshold (Ct) values of less than 37, and those greater than 37 but less than 40, with an “S” shape amplification 
curve, the corresponding samples can be treated as positive. The RT-PCR detection limits using various primer sets were shown to be 
around 100 SARS-CoV-2 RNA copies/μL; those obtained by the Chinese CDC were lower (below 50 RNA copies/μL) for the N gene with 
a maximum Ct value of approximately 39.5 (Vogels et al., 2020), but the primer set was not disclosed by the company for the kit used 
here. For some air and surface swab samples were also analyzed using digital PCR (Suzhou RainSure Scientific CO.,Ltd, Suzhou, China) 
and a detection kit (FastPlex Triplex SARS-CoV-2 Detection Kit, Suzhou RainSure Scientific CO.,Ltd) following the same procedure 
described previously (Liu et al., 2020). Some of the collected samples were re-tested for SARS-CoV-2 for both N and ORF1a/b genes 
using the LAMP chip technology (Beijing CapitalBio Technology Co., Ltd, Beijing, China) following the manufacturer’s instructions. In 
addition to detecting SARS-CoV-2, this technology can also detect 18 other viruses. All samplings were performed using single-use 
consumables and deionized (DI) water served as the negative controls. 

3 Results and discussion 

In this study, we have detected SARS-CoV-2 in exhaled breath (2 of 9, 22.2%), air samples (3 of 44, 6.8%), and surface swabs (10 of 
318, 3.1%) collected from hospitals of Wuhan using both RT-PCR and digital PCR (Table 1). Here we discovered that two recovering 
COVID-19 patients, in Wuhan hospitals (Table S1), ready for hospital discharge were emitting SARS-CoV-2 RNA, about (7.35–7.77) x 
104viruses per hour estimated by the method described (Ma et al., 2020), via breathing (Fig. 1; Table 1, Table S3). These patients were 
aged 71 years (BL-1) and 81 years (B-Z1) (Tables S2 and S3) (Fig. 1). The EBC samples were collected at least 14 days after they had 
developed clinical symptoms (Table S3); their throat swabs had repeatedly tested negative (the time line is shown in Fig. 1) at the time 
of the EBC collection and analysis (Fig. 1; Table S3). Their IgG tests were both positive on March 6 and 9, about 4–7 days before their 
EBC samples were collected (Table S3). Surprisingly, for patient B-L1(A), all tests with the throat swabs since February 21 had been 
negative, but the patient’s EBC sample, which was collected on March 13 (about 35 days after the patient developed symptoms), tested 
positive for SARS-CoV-2 (Fig. 1). For patient B-Z1(B), throat swabs tested positive on February 21, and March 2, and then tested 
negative on March 11; however, of two tests performed on March 12, one tested positive, and the other tested negative. On the 
following days (March 13, 14, and 15), the patient’s throat swabs repeatedly tested negative (Fig. 1; Table S3). Similar to patient B-L1 
(A), patient B-Z1’s EBC sample, which was collected on March 13 (42 days after the patient developed clinical symptoms), tested 
positive. The throat swabs from three non-COVID-19 patients (C-J1, A-U1, A-J1) all tested negative for SARS-CoV-2. For additional one 
non-COVID-19 patient (C–Y1), two EBC samples were collected, both of which tested negative by RT-PCR. The EBC samples from one 
COVID-19 subject (A-X1) and two non-COVID-19 subjects (A-J1 and A-U1) also tested negative using the chip technology as described 
in the Methods. Overall, the EBC sample positive rate was 22.2% among the 9 recovering COVID-19 patients (one patient B-L2 died, 

Table 1 
Analysis of SARS-CoV-2 and its positive rates from EBC samples collected from 9 ready-to-discharge/recovering COVID-19 patients, 44 air samples, 
and 318 surface swabs. Air and swab samples were directly quantified by a digital PCR. SARS-CoV-2 RNA level in exhaled breath sample was 
estimated based on an assumed amplification efficiency of 75%; and a RT-PCR detection limit of 100 copies/μL (Vogels et al., 2020) following a 
method described (Ma et al., 2020).  

Analysis of SARS-CoV-2 for 
different 
Samples 

Exhaled breath condensates from recovering 
COVID-19 patients (n=9) 

Air samples  
(n=44) 

Surface swabs  
(n=318) 

Sample SARS-CoV-2 RNA 
positive rate 

2/9 (22.2%) 3/44 (6.8%) 10/318 (3.1%) 

Estimated SARS-CoV-2 emission 
rate/level 

a (7.35 × 104, 7.77 × 104) RNA copies/hour b (9 × 10◦ , 2.19 ×
102) 
RNA copies/m3 

(digital PCR) 

b (3 × 10◦, 8 × 10◦) RNA copies/cm2 (6 of 10 
by digital PCR)  

a Lower Ct values from RT-PCR were used among those of N or ORF1a/b genes for presentation and viral estimation. 
b Air and surface swab samples were analyzed using digital PCR. 
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and the subject’s EBC was thus not taken). 
Of the 318 surface swabs collected, four samples tested positive for SARS-CoV-2 using RT-PCR, and another six samples were 

detected positive using digital PCR (Table 1, Fig. 2; Table S4). Some of example digital PCR data including hospital corridor air, ward 
air, air cleaner ventilation outlet, and face shield are presented in Fig. 2. More positive samples (60%) were detected among the 

Fig. 1. SARS-CoV-2 detection from EBC samples taken from the 9 recovering COVID-19 patients (Table S2); A) the recovering COVID-19 cases by 
age group; B) the recovering COVID-19 cases vs time of symptom onset to sample (TS2S) (day); C) throat swab tests for two COVID-19 patients. 2N 
= two negative results on the same date. P = positive result; NA = no tests available; ND = not detected; N = negative result. 

Fig. 2. Examples of digital PCR data from several air and surface samples collected during the campaign, including hospital corridor air (A), air 
cleaner ventilation outlet surface(B) ward air (C), and face shield surface (D). ORF1a/b gene detection was performed using FAM fluorescence 
probe, while N gene detection was performed using HEX fluorescence probe. For a signal amplitude above 3000, the corresponding signal was 
treated as a positive. Cy5 fluorescence probe was used the internal control. 
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medical touching surfaces (Table S4). The surface-borne SARS-CoV-2 concentration levels by digital PCR were shown to range from 3 
to 8 viruses/cm2 (Table 1). Surprisingly, only one positive sample (bedside faucet handle- C–SS–297) (3 viruses/cm2) was detected 
from the 158 surfaces frequently touched by patients such as cell phones, door handles, patients’ hands, or even surfaces of the masks 
worn by the patients (D-Y1, D-Y2) (Table S4). In line with the surface testing results, the EBC samples of the patients who were wearing 
the tested masks also tested negative (Table S3). However, for other mask tests we did not perform the exhaled breath analysis for their 
wearers due to time and resource constraints (Tables S3 and S4). One sample (D–SS–71) from the 57 hospital floor samples tested 
positive (4 viruses/cm2 estimated by digital PCR); and none of the 21 surface samples from clean areas, and 16 samples from other 
hospital surfaces tested positive for the virus (Table S4). Contrary to common belief, the observed overall positive rate for the surface 
swab samples was strikingly low, only 3.1% (n = 318). For all the air samples collected, none of them were detected positive by RT- 
PCR; however three of them were detected positive using a digital PCR, a more sensitive technology with a detection limit of 1 copy per 
μL (Liu et al., 2020) (Table 1, Table S5). The airborne SARS-CoV-2 concentration levels ranged from 9 viruses/m3 for the hospital 
corridor (D-Air-Z1) to 219 viruses/m3 for COVID-19 patient’s bedside air (B-Air-B24), while the hospital ward (B-Air-A24) had a 
concentration level of 21 viruses/m3 (Table 1). The positive air sample from the hospital corridor was collected using the ACW as 
described (Video S1). In addition, the surface swab from an air cleaner was also detected positive with SARS-CoV-2 by digital PCR with 
a concentration level of 4 viruses/cm2. Using the described chip technology, six air samples (A-Air-1,-2,-3,-5 and -6, A-Air-Un1) 
(Table S5) were re-tested for both target SARS-CoV-2 genes; all of them were confirmed negative. 

In our work in Beijing, we have shown that COVID-19 patients upon the onset of the disease were shown to emit ~105 viruses per 
min (Ma et al., 2020), two orders magnitude higher than that of the recovering stages here. Another study reported that two COVID-19 
cases (one without clinical symptoms), who repeatedly tested negative using throat swabs, tested positive for SARS-CoV-2 with their 
bronchoalveolar lavage fluid samples (Tan et al., 2020). These findings further support our observation that SARS-CoV-2 could be 
emitted from the lungs via breathing, presenting a significant health risk for surrounding people and environments. This potential of 
hidden spread represents a serious airborne infection risk from the recovering COVID-19 patients, while deemed ready for hospital 
discharge using throat-swab tests. Accordingly, throat swabs and EBC might work differently with different COVID-19 patients in 
terms of SARS-CoV-2 screening. COVID-19 diagnosis efficacy could be further improved by using EBC specimens or additional 
techniques such as CT scans as a complement to current throat swab testing by RT-PCR. Because of resource constraints, we did not 
study the viability and biological integrity of breath-borne SARS-CoV-2. Nonetheless, one study showed that aerosolized SARS-CoV-2 
could remain viable in the air for up to 3 h (van Doremalen et al., 2020). In a recent work, it was shown that in average about 60% of 
SARS-CoV-2 collected from a hospital air were viable (Lednicky et al., 2020). Logically, breath-emitted SARS-CoV-2, in a more 
favourable form of aerosolization, would be active in the air for at least the same amount of time, and would thus be capable of 
spreading COVID-19. On the other hand, the detected SARS-CoV-2 could be RNA-containing exosomes emitted by infected cells in viral 
defense (Hoen et al., 2020), dead viruses or bare RNAs in exhaled breath. Further work is needed to investigate where the detected 
RNA in exhaled breath originated from. Information about airborne emission and the viability of SARS-CoV-2 emitted by patients is 
critical to understanding COVID-19 transmission. The present work is the first to discover the presence of SARS-CoV-2 RNA in exhaled 
breath from recovering COVID-19 patients ready for discharge, and serves as warning for the underlying deficiency (22.2% failure 
rate) of the existing protocol in discharging COVID-19 patients. 

In contrast to the current belief that direct surface contact represents a major route for COVID-19 transmission, we detected a very 
low positive rate (3.1%) for surface swabs (N = 318) from various settings in the four Wuhan hospitals. This finding implies that direct 
surface contact, even in high risk areas, e.g., the environments studied, may not represent a major route of COVID-19 transmission. 
Using conventional RT-PCR, SARS-CoV-2 levels were shown to be below the detection limits for all 44 air samples collected (Video S1) 
in various hospital environments. However, three of them were detected positive with SARS-CoV-2 using digital PCR (a quantitative 
method). The observed low positive rates for both the air and surfaces were a collective consequence of a number of factors. Firstly, 
virus emission dynamics from COVID-19 patients – when, how, where, and at what rate patients emit SARS-CoV-2 – are still largely 
unknown. The observed virus emission by at least one patient was not continuous (patient B-Z1); it may be strongly dependent on the 
patient’s activities, e.g., coughing, sneezing, talking, or lung self-cleaning during the day. However, such activities, which are difficult 
to document, may have occurred before sample collection. Secondly, the hospitals applied disinfectants three times a day, possibly 
inactivating the virus and its RNA segments. Furthermore, all COVID-19 patients were required to wear a mask while in the hospital, 
reducing the release of the virus into the air or onto surfaces in the hospital environment. Lastly, natural air ventilation via open 
windows (every room had at least one window with an outside wind speed of up to 1.6–3.3 m/s) diluted airborne viruses. Since the 
time this study was conducted, no infections of medical staff have been reported from these four hospitals. Nonetheless, these data 
suggest that certain surfaces frequently touched by the medical staff and hospital air should be regularly disinfected to further lower 
related infection risks. The reported virus levels by the RT-PCR method could have been underestimated, which was previously re
ported to have a detection limit of 100 SARS-CoV-2 RNA copies/μL (Vogels et al., 2020). In terms of exposure to SARS-CoV-2, any 
single EBC collection involved high infection risks during the process, which severely limited the sample size in this work. While low 
infection risks were shown for surfaces and air in the evaluated hospitals, we revealed the breath emission of SARS-CoV-2 by 
convalescent patients otherwise ready for discharge, warranting an urgent need to revisit current hospital discharge guidelines to 
minimize the public risk. 

CRediT authorship contribution statement 

Lian Zhou: Data curation, Resources, Validation, Investigation. Maosheng Yao: Supervision, Conceptualization, Methodology, 
Data interpretation, Formal analysis, Resources, Investigation, Funding acquisition. Xiang Zhang: Data curation, Resources, 

L. Zhou et al.                                                                                                                                                                                                           



Journal of Aerosol Science 152 (2021) 105693

6

Validation, Investigation. Bicheng Hu: Data curation, Resources, Validation, Investigation. Xinyue Li: Data curation, Resources, 
Validation, Investigation. Haoxuan Chen: Data curation, Resources, Validation, Investigation. Lu Zhang: Data curation, Resources, 
Validation, Investigation. Yun Liu: Data curation, Resources, Validation, Investigation. Meng Du: Data curation, Resources, Vali
dation, Investigation. Bochao Sun: Data curation, Resources, Validation, Investigation. Yunyu Jiang: Data curation, Resources, 
Validation, Investigation. Kai Zhou: Data curation, Resources, Validation, Investigation. Jie Hong: Data curation, Resources, Vali
dation, Investigation. Na Yu: Data curation, Resources, Validation, Investigation. Zhen Ding: Data curation, Resources, Validation, 
Investigation. Yan Xu: Data curation, Resources, Validation, Investigation. Min Hu: Data interpretation, Investigation, Writing - 
original draft, Writing - review & editing, Formal analysis, Validation. Lidia Morawska: Data interpretation, Investigation, Writing - 
original draft, Writing - review & editing, Formal analysis, Validation. Sergey A. Grinshpun: Data interpretation, Investigation, 
Writing - original draft, Writing - review & editing, Formal analysis, Validation. Pratim Biswas: Data interpretation, Investigation, 
Writing - original draft, Writing - review & editing, Formal analysis, Validation. Richard C. Flagan: Data interpretation, Investigation, 
Writing - original draft, Writing - review & editing, Formal analysis, Validation. Baoli Zhu: Supervision, Conceptualization, Meth
odology, Data interpretation, Formal analysis, Resources, Investigation, Funding acquisition. Wenqing Liu: Supervision, Conceptu
alization, Methodology, Data interpretation, Formal analysis, Resources, Investigation, Funding acquisition. Yuanhang Zhang: 
Supervision, Conceptualization, Methodology, Data interpretation, Formal analysis, Resources, Investigation, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This research was equally supported by the Chinese Academy of Engineering Grant (2020-ZD-15), and a National Natural Science 
Foundation of China (NSFC) grant (22040101) (PI: M. Yao) dedicated to the COVID-19 pandemic. This work was also partially 
supported by the NSFC Distinguished Young Scholars Fund Awarded to M. Yao (21725701), and the Scientific Research Fund of 
Jiangsu Provincial Health Committee (S2017002). 

Appendix ASupplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jaerosci.2020.105693. 

Supporting Information 

COVID-19 patient statistics; map of Hospital C (Fever clinics) and sample collection points; map of Hospital C (Wards) and air 
sample collection points; an example of collection of exhaled breath samples using the BioScreen II; examples of air sample collection 
in various hospital settings (PDF). 

Hospital information; patients information; exhaled breath samples; surface swabs; air samples; pollutants and meteorological 
parameters information (XLSX). 

Robot sampling (MP4). 

References 

van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd- 
Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382, 
1564–1567. 

Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Prevention and Control (CCDC). (2020). The epidemiological characteristics of 
an outbreak of 2019 novel coronavirus diseases (COVID-19) in China, 2020. Chinese Journal of Epidemiology, 41, 145–151. 

Guo, Z. D., Wang, Z. Y., Zhang, S. F., Li, X., Li, L., Li, C., Cui, Y., Fu, R., Dong, Y., Chi, X., Zhang, M., Liu, K., Cao, C., Liu, B., Zhang, K., Gao, Y., Lu, B., & Chen, W. 
(2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging Infectious Diseases, 
26(7), 1583–1591. 

Hoen, E. N., Cremer, T., Gallo, R. C., & Margolis, L. B. (2016). Extracellular vesicles and viruses: Are they close relatives? Proceedings of the National Academy of 
Sciences, 113(33), 9155–9161. 

Lednicky, J. A., Lauzardo, M., Fan, Z. H., Jutla, A., Tilly, T. B., Gangwar, M., Usmani, M., Shankar, S. N., Mohamed, K., Eiguren-Fernandez, A., Stephenson, C. J., 
Alam, M. M., Elbadry, M. A., Loeb, J. C., Subramaniam, K., Waltzek, T. B., Cherabuddi, K., Morris, G. J., & Wu, C. Y. (2020). Viable SARS-CoV-2 in the air of a 
hospital room with COVID-19 patients. International Journal of Infectious Diseases. https://doi.org/10.1016/j.ijid.2020.09.025 

Liu, Y., Ning, Z., Chen, Y., Guo, M., Liu, Y., Gali, N. K., Sun, L., Duan, Y., Cai, J., Westerdahl, D., Liu, X., Xu, K., Ho, K., Kan, H., Fu, Q., & Lan, K. (2020). Aerodynamic 
analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582, 557–560. 

Ma, J., Qi, X., Chen, H., Li, X., Zhan, Z., Wang, H., Sun, L., Zhang, L., Guo, J., Morawska, L., Grinshpun, S. A., Biswas, P., Flagan, R. C., & Yao, M. (2020). Coronavirus 
Disease 2019 patients in early stages exhaled millions of Severe Acute Respiratory Syndrome Coronavirus 2 per hour. Clinical Infectious Diseases. https://academic. 
oup.com/cid/advance-article/doi/10.1093/cid/ciaa1283/5898624. 

Peng, J., Wang, M., Zhang, G., & Lu, E. (2020). Seven discharged patients turning positive again for SARS-CoV-2 on quantitative RT-PCR. American Journal of Infection 
Control, 48, 725–726. 

L. Zhou et al.                                                                                                                                                                                                           

https://doi.org/10.1016/j.jaerosci.2020.105693
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref1
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref1
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref1
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref2
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref2
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref3
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref3
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref3
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref4
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref4
https://doi.org/10.1016/j.ijid.2020.09.025
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref6
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref6
https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1283/5898624
https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1283/5898624
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref8
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref8


Journal of Aerosol Science 152 (2021) 105693

7

Reusken, C. B., Buiting, A., Bleeker-Rovers, C., Diederen, B., Hooiveld, M., Friesema, I., Koopmans, M., Kortbeek, T., Lutgens, S. P. M., Meijer, A., Murk, J., 
Overdevest, I., Trienekens, T., Timen, A., den Bijllaardt, W. V., Disse, J. V., Gageldonk-Lafeber, A. V., der Vegt, D. V., Wever, P. C., der Hoek, W. V., & 
Kluytmans, J. (2020). Rapid assessment of regional SARS-CoV-2 community transmission through a convenience sample of healthcare workers, The Netherlands, 
March 2020. Euro Surveillance, 25, Article 2000334. 

Santarpia, J. L., Rivera, D. N., Herrera, V., Morwitzer, M. J., Creager, H., Santarpia, G. W., Crown, K. K., Brett-Major, D., Schnaubelt, E., Broadhurst, M. J., 
Lawler, J. V., Reid, S. P., & Lowe, J. J. (2020). Aerosol and surface transmission potential of SARS-CoV-2. medRxiv, 2020, 03.23.20039446. 

Tan, F., Qiu, Y., & Xu, Z. (2020). Novel coronavirus pneumonia diagnosis for two cases using Bronchoalveolar lavage fluid (in Chinese). Chinese Journal of Tuberculosis 
and Respiratory Medicine, 43, 337–339. 

Vogels, C. B. F., Brito, A. F., Wyllie, A. L., Fauver, J. R., Ott, I. M., Kalinich, C. C., Petrone, M. E., Casanovas-Massana, A., Muenker, M. C., Moore, A. J., Klein, J., Lu, P., 
Lu-Culligan, A., Jiang, X., Kim, D. J., Kudo, E., Mao, T., Moriyama, M., Oh, J. E., … Grubaugh, N. D. (2020). Analytical sensitivity and efficiency comparisons of 
SARS-COV-2 qRT-PCR primer-probe sets. Nature Microbiology. https://doi.org/10.1038/s41564-020-0761-6 

Wan, W., Cha, A. E., & Sun, L. H. (2020). This is the coronavirus math that has experts so worried: Running out of ventilators, hospital beds. Washington Post. https:// 
www.washingtonpost.com/health/2020/03/13/coronavirus-numbers-we-really-should-be-worried-about/. 

Xiao, A. T., Tong, Y. X., & Zhang, S. (2020). False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: Rather than recurrence. Journal of Medical 
Virology. https://doi.org/10.1002/jmv.25855 

Xie, X., Zhong, Z., Zhao, W., Zheng, C., Wang, F., & Liu, J. (2020). Chest CT for typical 2019-nCoV pneumonia: Relationship to negative RT-PCR testing. Radiology. 
https://doi.org/10.1148/radiol.2020200343 

Zhang, J., Yan, K., Ye, H. H., Lin, J., Zheng, J. J., & Cai, T. (2020). SARS-CoV-2 turned positive in a discharged patient with COVID-19 arouses concern regarding the 
present standard for discharge. International Journal of Infectious Diseases, 97, 212–214. 

Zhao, W., Zhong, Z., Xie, X., Yu, Q., & Liu, J. (2020). Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: A 
multicenter study. American Journal of Roentgenology, 214, 1072–1077. 

L. Zhou et al.                                                                                                                                                                                                           

http://refhub.elsevier.com/S0021-8502(20)30178-6/sref9
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref9
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref9
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref9
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref10
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref10
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref11
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref11
https://doi.org/10.1038/s41564-020-0761-6
https://www.washingtonpost.com/health/2020/03/13/coronavirus-numbers-we-really-should-be-worried-about/
https://www.washingtonpost.com/health/2020/03/13/coronavirus-numbers-we-really-should-be-worried-about/
https://doi.org/10.1002/jmv.25855
https://doi.org/10.1148/radiol.2020200343
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref16
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref16
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref17
http://refhub.elsevier.com/S0021-8502(20)30178-6/sref17

